
Abstract. The title paper of Wilfried Meyer is a
landmark for modern electron correlation theories and
their e�cient implementation. It described for the ®rst
time a matrix-formulated direct con®guration interac-
tion method. This approach eliminates all coupling
coe�cients involving external orbitals and the need for a
``formula tape''. Secondly, a full integral transformation
is avoided, a prerequisite for integral-direct implemen-
tations. Third, the theory is formulated in a basis of
nonorthogonal virtual orbitals (or atomic orbitals),
which forms the basis of current local electron correla-
tion treatments. Meyer's paper , which was written while
I was a diploma student in his group, has strongly
in¯uenced my own work on multireference con®guration
interaction, coupled-cluster theory, and local electron
correlation methods. The current paper reviews the
history of the self-consistent electron pairs method and
describes its relation to current electron correlation
techniques.
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The slow convergence of the dynamical correlation
energy with respect to the number of Slater determinants
or con®guration state functions (CSFs) has been one of
the major problems of quantum chemistry since the
proposal of the con®guration interaction (CI) method by
Boys in 1950. It was realized early that at least the ®rst-
order interacting space of the Hartree±Fock (HF)
wavefunctions, which is spanned by all single and double
excitations from the HF reference function into virtual
orbitals, is needed to recover a substantial part of the
electron correlation energy. This led to the development
of electron pair theories [1, 2] in the late 1960s and early
1970s. However, even this small subspace of the full CI
space grows with the fourth power of the molecular size
or the number of correlated electrons (assuming that the

number of occupied and virtual orbitals grows linearly).
Since, in principle, the Hamiltonian matrix must be
constructed and diagonalized in the CSF basis, the
applicability of the simplest and original version of the
CI method was limited to very small systems. Early
attempts to treat the correlation problem therefore
introduced additional approximations, such as con®gu-
ration selection by means of perturbational estimates of
their importance. Alternatively, certain couplings were
neglected, as for instance in the independent electron pair
approximation (IEPA) [2] . By means of localizing the
occupied orbitals and transforming the virtual orbitals to
pair natural orbitals (PNOs), which are pairwise nonor-
thogonal, a dramatic reduction in the number of
con®gurations could be achieved. In 1971 Meyer gener-
alized the PNO-IEPA scheme to PNO-CI [1], which
included all couplings between the di�erent electron
pairs. Moreover, he proposed the coupled-electron-pair
approximation (CEPA) [1, 3], which accounts for the
most important e�ects of higher excitations and is size-
consistent. CEPA can be viewed as a good approxima-
tion to coupled-cluster theory. Using the PNO-CEPA
method, Meyer, in 1973, was able to compute about 90%
of the correlation energy for molecules such as H2O and
CH4, and this was an important landmark in electronic
structure theory. Due to the optimum convergence
properties of the PNO orbital basis coupled with
con®guration selection, this could be achieved with only
a few hundred con®gurations. The disadvantage of the
PNO-CI/CEPA method is that di�erent orbitals are
needed for each electron pair, which limits the extension
to larger systems. Furthermore, the perturbative deter-
mination of the PNOs and the subsequent orbital or
con®guration selection leads to small discontinuities on
potential-energy surfaces. Despite the tremendous suc-
cess of the PNO methods it was therefore desirable to
develop methods which allowed the full space of single
and double excitations to be included.

The ®rst important step in this direction was made by
Roos [4] in 1972 by proposing the direct CI method. He
realized that the lowest eigenvectors and eigenvalues can
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be computed iteratively without ever setting up the
Hamiltonian matrix explicitly. Instead, it is su�cient to
compute the vector r = (H ) E)c, where c is a trial
vector and r a residual vector, from which an update to c
can be obtained by ®rst-order perturbation theory. The
product Hc can be obtained directly from the two-elec-
tron integrals, the vector c, and coupling coe�cients,
which depend on the formal structure of the CSFs. In
the implementations by Roos and Siegbahn [5] symme-
try-adapted orthonormal con®guration state functions
were used as N-electron bases. The integrals were fully
transformed into the molecular orbital (MO) basis, and
the construction of the r vector was driven by the two-
electron integrals. Depending on the interaction and
integral type, about 140 di�erent nonzero coupling
coe�cients were distinguished, resulting in a lot of logic
and overhead.

In this situation, Meyer's paper represented signi®-
cant progress in several aspects. Firstly, the logic for
constructing the residual vector r was not carried down
any more to individual one- and two-electron integrals
and con®gurations, but was reduced to deal with whole
matrices of integrals and con®guration coe�cients. This
is a generalization of what had already been proposed by
Ahlrichs and Driessler [6] for the two-electron case. The
integral matrices represent the half-transformed two-
electron integrals with at least two occupied orbitals,
while the coe�cient matrices represent electron pair
functions. The matrix formulation was achieved by
partially giving up the normalization of the con®gura-
tions: implicit in the theory is a di�erent normalization
of diagonal doubly external con®gurations, Uaa

ij , and o�-
diagonal con®gurations, Uab

ij (a 6� b). This made it pos-
sible to eliminate all coupling coe�cients depending on
external (virtual) orbitals. In fact, this simpli®cation
follows most naturally by constructing the CSFs so that
they can be considered as tensor components of the
external orbital subspaces [7]. The equations for the
residual vector were given in the form of matrix opera-
tions (mainly matrix multiplications), and there are only
very few simple coupling coe�cients depending on the
spin-coupling (singlet or triplet) of the two external
electrons. Thus, all complicated logic was removed,
allowing an implementation of optimum e�ciency. In
fact, matrix multiplications are still the fastest opera-
tions one can perform on all kinds of computers today,
ranging from personal computers with the Linux
operating system or RISC workstations to vector
supercomputers.

Secondly, Meyer showed in this paper that a full
integral transformation can be avoided. The self-
consistent electron pair (SCEP) method only requires
transformed integrals with at least two occupied orbitals
involved. The contributions of the remaining integrals
with one or zero occupied orbitals can be treated by
computing for each electron pair an ``external'' exchange
operator that can be obtained directly in the atomic
orbital (AO) basis, very much like the exchange
contribution to the Fock matrix in the self-consistent-
®eld (SCF) case. In fact, in the original SCEP formula-
tion two such operators per pair were needed for the CI
with single and double excitations (CISD) case, but it

was shown soon later [8] that a single operator per pair is
su�cient. This is even true for full coupled-cluster with
single and double excitations (CCSD) [9]. Avoiding the
full integral transformation reduces the disc space for
integral storage by a factor of 2 and the processing time
for the transformation from O�N5� to O�mN4�, where m
is the number of correlated orbitals and N the number of
basis functions. At ®rst glance this seems most signi®-
cant for highly accurate calculations with large basis sets
on small molecules. At the time of Meyer's paper, most
researchers considered this not to be a very important
advantage, since the basis sets one was able to use were
relatively small anyway. Moreover, computing the ex-
ternal exchange operators in the AO basis rather than in
the MO basis from fully transformed integrals requires
additional matrix transformations, and apart from this it
increases the cost formally from about npair�N ÿ m�4 to
about npairN 4. However, from the current point of view,
avoiding the full transformation is essential for modern
integral-direct correlation methods [10] that allow the
use of many hundreds of basis functions. If in such
methods screening of the two-electron integrals in the
AO basis is performed, the scaling of the computational
cost with molecular size can be reduced dramatically.
Using local electron correlation treatments (see later)
even linear cost scaling becomes possible.

The third new and, in retrospect, very important
contribution in Meyer's paper was the proposal to
compute not only the external exchange operators but
also the complete residual directly in the nonorthogonal
AO basis. He showed that the nonorthogonality only
leads to quite minor complications in the equations for
the residual; namely, some additional matrix multipli-
cations with the overlap matrix are needed. The residual
in the AO basis is transformed into the MO basis only
for performing the perturbational update of the con®g-
uration coe�cients. At the time when the paper was
written, the AO formulation probably seemed to most
people an unnecessary complication. From our present
viewpoint, however, it was far ahead of the time: today
we know that the AO formulation is essential for
exploiting the local short-range character of electron
correlation and makes possible linear cost scaling with
molecular size even for coupled-cluster methods.

The fourth important contribution of the paper was
to show how a Brueckner CI(D) is performed e�ciently.
In fact, even though the paper gives all matrix elements
needed for a CISD, the iterative method described by
Meyer was a Brueckner theory, since the single excita-
tions were absorbed into the reference function. He
proposed two di�erent ways for absorbing the single
excitations: either by a simple ®rst-order update scheme
of the orbitals with subsequent symmetrical orthonor-
malization or by performing a natural orbital iteration.
He also introduced projectors to the external space,
similar to those used nowadays in local correlation
treatments. In the SCEP framework, the projectors were
used to retain strong orthogonality between the external
pair functions and the reference wavefunction once the
occupied orbitals were modi®ed in the Brueckner itera-
tion. Meyer probably favored the Brueckner iteration
mainly to avoid the construction of two external
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exchange operators per pair in each iteration. As already
mentioned, it was shown later that this is possible even
with explicit inclusion of single excitations. Much later
several groups showed that Brueckner theory has some
important advantages, in particular in situations with
symmetry-breaking.

The SCEP method was ®rst implemented in 1976 for
closed-shell reference functions by Dykstra and Meyer
during a visit of Dykstra in Mainz and was ®rst applied
by Dykstra, Schaefer, and Meyer [11]. It was generalized
in 1981 for multicon®guration reference functions by
Werner and Reinsch [8]. The latter method was the ®rst
implementation of an internally contracted multirefer-
ence CI. The internal contraction scheme was proposed
in another landmark paper of Meyer [12], which was
written almost at the same time as the SCEP paper and is
closely related to it. The internally contracted multiref-
erence SCEP method [8] used a similar matrix structure
as Meyer's original SCEP, but was formulated in an
orthogonal orbital basis and included all single and
double excitations from the multicon®guration SCF
reference function. In 1988, a new implementation of the
internally contracted multireference CI was completed
[13, 14], which is still of unmatched e�ciency. The
internal contraction scheme is also widely used in
multireference perturbation theory (MRPT2, CASPT2/
3) [15±17], since the internally contracted con®gurations
span exactly the ®rst-order interaction space of a
multicon®guration reference wavefunction [12]. The
SCEP theory was further generalized in 1984 by Pulay,
Saebù, and Meyer [18] to the coupled-cluster doubles
case [18] and later to closed and open-shell CCSD cases
in our group [9, 19]. In Ref. [18] it was shown for the ®rst
time that the equations can be simpli®ed by generating
the con®gurations by spin-coupled pair excitation
operators, ÊaiÊbj. This leads not only to unnormalized
but also to nonorthogonal con®gurations. Nevertheless,
the number of matrix multiplications is reduced and for
closed-shell reference functions the coupling coe�cients
are entirely eliminated (except for simple factors such as
2 in some terms).

As previously mentioned, the formulation of the
theory with nonorthogonal correlation orbitals forms
the basis for local electron correlation theories, as pro-
posed by Pulay in 1983 [20] and ®rst implemented for
MP4(SDQ), CISD, and CEPA by Saebù and Pulay [21,
22]. A generalization for full CCSD was published in
1996 by Hampel and Werner [23]. In these methods the
virtual space is spanned by a redundant set of projected
AOs, which are orthogonalized on the occupied orbitals.
Alternatively, AOs could be used directly as proposed by
Meyer. The advantage of using AOs (or projected AOs)
to span the virtual space is the fact that these are
intrinsically localized. This allows the restriction of
excitations from localized occupied orbitals to relatively
small subspaces (domains) of virtual functions. Each
pair is described by a di�erent domain, but the size of
each pair domain is independent of the molecular size.
This immediately reduces the O�N 4� dependence of the
number of con®gurations and variational parameters to
O�N 2�. Furthermore, by neglecting or approximating the
very small contributions of distant electron pairs, linear

scaling, O�N�, of the number of electron pairs and of the
con®gurations is obtained, but nevertheless 98±99.5% of
the canonical correlation energy is recovered. Linear
scaling of the computational cost with molecular size has
recently been achieved in our group for local MP2 [24],
and this new program has made it possible to perform
overnight LMP2 calculations for molecules with about
300 valence electrons and over 1500 basis functions on
a single low-cost personal computer. A local coupled-
cluster program with linear-scaling behavior is presently
under development.

AO formulations are currently also being investigated
by other groups with the aim of reducing the computa-
tional cost for large molecules. Ayala and Scuseria [25]
have presented a linear-scaling MP2 method based on
the Laplace transformation formalism of HaÈ ser and
Almlùf [26]. More closely related to the SCEP formalism
of Meyer is a recent tensor formulation of coupled-
cluster theory by Head-Gordon et al. [27]. As far as the
treatment of the virtual space is concerned, this is basi-
cally the same as what was described in Meyer's SCEP
paper more than 20 years ago. (see also Ref. [7]); how-
ever, Head-Gordon et al. go a step further by also using
a redundant set of nonorthogonal (projected) AOs to
span the occupied space. This seems very wasteful at ®rst
glance, but as Head-Gordon et al. demonstrated for a
number of test cases, a relatively small number of
selected con®gurations is su�cient to recover most of the
correlation energy [28]. In fact, in a very recent paper by
Scuseria and Ayala [29] it is demonstrated for a related
method that the number of con®gurations (or coupled-
cluster amplitudes) needed to obtain a ®xed fraction of
the canonical correlation energy scales linearly with
molecular size, as is also the case in local correlation
methods with orthogonal localized orbitals.

During the last decade, linear-scaling density func-
tional theory (DFT) methods have played a crucial role
in extending the applicability of electronic structure
methods to very large molecular systems; however, the
problem remains that there is no possibility to system-
atically approach the exact result using DFT. Many at-
tempts are presently being made to improve the available
functionals, but this is mainly achieved by ®tting DFT
results to experimental data. DFT can therefore be
viewed as a semiempirical theory. Accurate wavefunc-
tion-based local electron correlation methods are cur-
rently catching up with DFT in applicability to larger
systems. It is my view that Meyer's 1976 paper forms
the basis for these very exciting new developments. The
SCEP theory was clearly far ahead of its time.
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